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Abstract
The standard result for the force per unit length on a vortex is derived for an
arbitrary configuration of vortices and transport currents in the London limit.
The sign reversal between this force, and the Lorentz force on a current in
a magnetic field, is shown to be because of the fact that the vortex and the
currents driving it are embedded in a single condensate.

PACS numbers: 74.20, 74.25.Qt

The standard driving force on a vortex in a superconductor due to other supercurrents has the
form

F(r) = J(r) × Φ0 (1)

where F(r) is the force per unit length on a vortex at r, J(r) is the current density at r due
to all sources other than the vortex itself, and the vector Φ0 is equal in magnitude to the flux
quantum φ0 = hc/(2e) and points in the direction of the magnetic flux in the vortex. F in
equation (1) is often stated to be the Lorentz force on the vortex due to the interaction between
the current J and the vortex magnetic field, but this is actually not the case, see equation (8),
most importantly because the sign is wrong. In this letter we discuss the physical origin of
equation (1) in detail.

Equation (1) is usually derived [1, 2] by computing the force between two long parallel
vortices or a vortex and a boundary, and generalizing the result. Although the generalization is
a very natural one, since a vortex cannot ‘know’ the origin of the supercurrents in its vicinity,
this is based on the assumption that the force only depends on local quantities. This is not
so obvious: as we shall see in the second half of this letter, the fact that both the vortices
are embedded in the same condensate is important in understanding why equation (1) differs
from the Lorentz force of classical electromagnetism, equation (8). But the existence of an
extended condensate opens the possibility of a non-local form for the vortex force. In fact, the
local form in equation (1), in which the force at r only depends on the current density at r, is
correct, but it is worth investigating the reason for this. Furthermore, if the supercurrent J were
a transport current, driven by external sources, one would have to include the work done by the
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external source when the vortex moves in order to obtain the force from energy conservation.
This is not an issue for the intervortex interaction, and so one might be concerned that the
expression for the force could depend on whether the current is due to external sources or
other vortices, which is actually not the case. It is thus useful to obtain equation (1) under
general circumstances and to clarify its physical origin.

Using the London free energy [1, 2]1,

F = 1

2

∫
dτI λ2J 2 +

1

2

∫
dτB2 (2)

where the first integral runs over the superconductor and the second over all space, the change
in free energy when the vortex moves a small distance is

δF =
∫

dτI λ2J · δJ +
∫

dτ B · δB. (3)

In calculating the force on the vortex from energy balance, we also have to consider the work
done by external sources. If the current I is injected into the superconductor at r1 and extracted
at r2 (it is easy to generalize this to multiple sources and sinks), the work done by the external
source driving the current when the vortex moves is

δW =
∫

dτE J · δA − I (h̄/2e)[δχ1 − δχ2]. (4)

The first term is from the Faraday emf, and is an integral over the region outside the
superconductor (including the external circuit path from r2 to r1). The second term comes from
the potential difference between the two points due to the vortex motion, (h̄/2e)[∂tχ1 − ∂tχ2],
where χ is the phase of the superconducting order parameter [3]. Therefore

δF − δW =
∫

dτI λ2J · δJ +
∫

dτ B · δB −
∫

dτE J · δA + I (h̄/2e)(δχ1 − δχ2). (5)

Integrating by parts,
∫

dτ B · δB = ∫
dτ J · δA. This cancels − ∫

E
J · δA, leaving

∫
dτI J · δA.

Also, I (δχ1 − δχ2) = ∫
dτE J ·∇(δχ) is equal to − ∫

dτI J ·∇(δχ). Expressing λ2J as
(h̄/2e)∇χ − A and simplifying equation (5) yields

δF − δW = (h̄/2e)

∫
dτ ′ J · [δ(∇χ) − ∇(δχ)]. (6)

This is not zero because of the singularity in ∇ × ∇χ. For a displacement δr of the vortex,

δ(∇χ) − ∇(δχ) = 2π(n̂ × δr)δ2(r) (7)

where n̂ is the (local) direction of the vortex and δ2(r) is non-zero at the vortex core. Thus
δFint − δW = −�0

∫
[J × dl] · (δr), with a line integral along the vortex core. This yields

equation (1) for the force per unit length on the vortex.
There are a few special cases worth noting here. Firstly, when the currents flow entirely in

the superconductor, either due to other vortices or as closed current loops. There is no external
work done in this case, and the driving force on the vortex comes from the change in Fint.
Secondly, when the driving currents are entirely outside the superconductor, from equation (6)
there is no force on the vortex2. Thus the same current flowing on or just off the surface of a
superconductor gives rise to different forces on the vortex, unlike the Lorentz force in classical
electromagnetism. Finally, for a stream of vortices flowing through a superconducting sample
in steady state, Fint and A are constant, and the force on the vortices comes solely from

1 SI units are used throughout this paper, but with µ0 = 1.
2 Except for indirect forces, if the external currents induce a screening current on the superconductor.
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the external work done by the source of transport current against the electrostatic potential
difference (h̄/2e)(∂tχ1 − ∂tχ2).

We next consider why the force on a vortex differs from the Lorentz force in classical
electromagnetism. Since the Lorentz force on a current due to a magnetic field is

∫
dτ J × B,

the force on the vortex due to the supercurrent J should have been its opposite:

FL = −
∫

dτ (J × Bv). (8)

This differs from equation (1) by a sign, and by not being concentrated at the vortex core.
Since equation (8) is valid for all magnetic materials (and for electrical circuits), this leads to
the question: why does a superconductor behave differently from all other magnetic materials?

In order to understand the difference, we look for the closest analogue with magnets for a
system of vortices. Accordingly, we consider the case of two vortices with no external currents
in a superconductor, compared to two weakly coupled magnets whose magnetism is entirely
orbital in origin. In the first case, the interaction part of the free energy is

Fint =
∫

dτ [λ2J1 · J2 + B1 · B2] (9)

where J1,2 are the currents due to the two vortices, and B1,2 are the corresponding magnetic
fields. In the second case, the free energy consists of the material free energy,

Fmat =
∑
1,2

1

2m

∫
dτ |(−ih̄∇ − eA)ψ|2 + potential energy (10)

and the magnetic field energy. For weak coupling, the vector potential A2 due to the second
magnet is a small perturbation on the first (and vice versa), and the interaction part of the free
energy is

Fint =
∫

dτ [−J1 · A2 − J2 · A1 + B1 · B2]. (11)

There is also a change in ψ1,2 because of A2,1 but the effect on F from this is second order.
Equation (11) differs from equation (9) by (i) the existence of two ‘non-magnetic’ terms

instead of one, (ii) J1,2 being coupled to A2,1 instead of J2,1. Both of these differences come
from the existence of two separate wavefunctions for the two magnets, whereas the two
vortices are embedded in a single condensate. Thus the difference between the two equations
is because the vortices are not really separate superposable objects, a somewhat surprising
conclusion since the linearity of the London equations apparently justifies treating vortices
as separate and superposable. Standard manipulations on equation (11) show that the effect
of the third term is reversed by the first two, yielding equation (8); on the other hand, in
equation (9) the first term concentrates the intervortex interaction at the core without reversing
its sign, as in equation (1)3.

Although we have made the comparison using orbital magnetism,because the resemblance
between equations (9) and (11) brings out their essential difference, equation (8) is of course
general for magnets. On thermodynamic grounds, one can define the magnetization density
M of a magnet by the condition δFmat = − ∫

dτM · δB for an arbitrary change δB in the
magnetic field4. If one now considers two magnets and moves the second one infinitesimally
3 For a superconductor that is not strongly type-II, the Ginzburg Landau free energy can yield more complicated
intervortex interactions [4].
4 That this definition is correct can be seen by varying the total free energy—including the magnetic term—with
respect to B: stationarity with respect to any divergence free δB requires that B − M should be curl free, which is
equivalent to the standard definition of M in the absence of external currents, ∇ × B = ∇ × M. This defines M up
to the gradient of a scalar potential. For a superconductor, this is all one can achieve; the local magnetization has no
physical significance beyond this (see [5], section 53). This is similar to the situation with polarization in conductors.
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towards the first, simple integration by parts yields δF = δFB + δF1
mat + δF2

mat = −δFB, since
the second and third terms in the intermediate expression are equal and opposite to the first.
Implicit in this derivation is the assumption that the magnets can be treated as separate objects,
whose magnetization can be varied independently.

We note that when one is not considering the interaction of two distinct magnetized
objects, equation (8) breaks down even without superconductivity. For example, consider a
material which has a magnetic phase with magnetization density M and a non-magnetic phase.
Let the free energy densities in the first and the second phases in the absence of an applied
magnetic field be fM(0) and fN(0) respectively. For simplicity, consider a long vertical sample
in a vertical applied magnetic field. If the applied magnetic field (not the actual magnetic field
in the sample) is increased from B0 to B0 + δB0, the change in fN −fM is [5] equal to M · δB0.

Phase coexistence occurs at the value of B0 for which fN (B0) − fM(B0) = 0, i.e. the value
of B0 for which

fN(0) − fM(0) = −
∫

dB0 · M(B0). (12)

On the other hand, with a vertical boundary between the two phases, the Lorentz force per unit
area that would have been exerted on the boundary can be obtained from the surface current
M and the magnetic fields B0 and B0 + M on the two sides of the boundary. The Lorentz
force per unit area would have been −M · (

B0 + 1
2 M

)
. From equation (12), this is equal to the

‘condensate’ pressure fN(0)−fM(0) only if M · (
B0 + 1

2 M
) = ∫

dB0 · M(B0). Integrating the
right-hand side by parts, this is equivalent to the condition∫

dM · (B0 + M) = 0. (13)

While this is true when the magnetic phase is perfectly diamagnetic, it is not true in general.
This is because equation (8) was derived for (rigid) translations of magnets, and not for
a change in shape of a single magnetized region. The unusual feature of the intervortex
interaction is that it involves translations of apparently independent objects and still violates
equation (8).

It has been argued [6] that the difference between equations (1) and (8) is because the
force on a vortex is primarily not a magnetic force at all, but rather a ‘dynamic quantum force’.
This is based on the observations that the energy of a single vortex is dominated by its kinetic
energy (the first term in equation (2)), and that equation (1) can be expressed as a current–
current interaction. Although these observations are correct, the conclusion is erroneous. The
Lorentz force in magnets is also predominantly ‘dynamical quantum’ in origin. The field
energy by itself would cause two parallel vortices to repel—since the field energy is quadratic
in the magnetic field—like equation (1), but without concentrating the force at the vortex core:

Ff =
∫

dτ (J × B). (14)

As we have seen, in ordinary magnetic materials Fmat gives rise to an additional force twice
as large and opposite to equation (14), yielding equation (8). These extra terms are quantum
in origin for spin magnetism, and dynamic and quantum for orbital magnetism: the first part
of Fmat in equation (10) is the direct analogue of the first part of F in equation (2). In fact
quantum effects are less important in superconductors, since equation (1) only concentrates
the force of equation (14) at the vortex core, while equation (8) reverses it5.

5 For superfluids, or—as [6] remarks—Josephson junction networks, the force on a vortex is entirely from the kinetic
energy of the superfluid, but this is not true for bulk superconductors.
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To conclude, we have obtained the standard expression for the force on an Abrikosov
vortex in a superconductor, regardless of the origin of the supercurrents in its vicinity, and
explained its form intuitively. In particular, we have shown that the force on a vortex from
another vortex is not the same as for ordinary magnetic materials, because a single condensate
runs through the entire system.
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